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of users attempting to communicate with a central node via a common communication

media. The multiaccess communication problem examines how to utilize most

efficiently the available communication resources.

This thesis proposes two random-access algorithms appropriate for operation in

networks employing capture (that is, the correct reception of a single transmission in the

presence of multiple transmissions). Both the paradigmatic ternary-feedback model as

well as an enriched-feedback scheme are considered. After observing the regenerative

properties of these algorithms, several results from renewal theory are employed to

compute the throughput and delay characteristics of the proposed algorithms. It is shown

that significant performance improvements (as compared to non-capture systems) are

possible using systems with capture and employing appropriate random-access

algorithms. Extensive numerical results are included.
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CHAPTER 1 

Introduction

Communication networks have seen a remarkable rise in both applications and

theoretical study in the the past twenty years. An increased demand for flexible and

easily modified communication systems has supported recent interest in applications of

communication networks to a wide variety of problems such as mobile packet radio,

distributed sensor systems, satellite networks, and a plethora of applications in integrated

computer communications.

Typical communication system analysis assumes the existence of a point-to-point

link between two "nodes" desiring to exchange information. The received signal at either

end of the link, therefore, depends only on the available bandwidth and the noise process

corrupting the communication media. However, in the network environment considered

herein many users share a common channel, and attempt to communicate with a central

node. Therefore, in communication networks such as multitap bus systems or packet

radio networks the received signal at any one node may be affected by the signals being

transmitted at any of the other nodes in the network. The received signal at any one node

may, thus, be modeled as a sum of attenuated and delayed transmissions from several

sources and an additive noise component. The multiaccess communication problem is

how to utilize best the available communication media. ,,..

a



Many references ( [1], [2] ) discuss the basic design considerations and trade-offs

inherent to the selection of a multiaccess technique. The usual figures of merit for a

communication network are the throughput (which is approximately the probability of a g

slot being used for a successful transmission) and the average delay experienced by a

transmission. The stochastic nature of the user population employing the network is of

*0 paramount importance in selecting a multiaccess technique. For a small number of

high-duty-cycle users a network is best established using a deterministic scheduling

scheme such as time-division multiplexing (TDM) or frequency-division multiplexing

(FDM). Such deterministic systems with n users can achieve throughputs very close to 1

with average delay on the order of n/2 units of time. The more difficult and interesting

problem occurs with a large ( possibly time-varying ) number users, which generate

traffic in a bursty manner. Deterministic techniques may still provide excellent

throughput for such populations; however, average delay is still on the order of n/2 units

of time, which may be very large for n large. For such situations random-access

techniques may be employed to lower delay with a corresponding reduction in

throughput for the network. In this report two specialized random-access algorithms

appropriate for a specific environment ( that is, the capture environment ) are designed

and analyzed. For concreteness the usual assumptions implicit in the analysis of a

random-access network are discussed. Different modifications are then discussed and

justified for such networks and random-access algorithms are presented for the modified

environments.

1
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1.1 Network System Model

In order to focus attention on the multiaccess aspects of networks, a somewhat
idealized model of an actual network is assumed.

The following assumptions are paradimatic for theoretical studies of random-access

techniques.

(1) The entire network is assumed to be synchronized to a common, slotted channel.

Channel time is partitioned into slots so that time may be measured in integers on

i the channel. Users transmit packets of data with duration equal to one channel slot.

All packet transmissions are restricted to beginning at slot boundaries. For many

networks the use of a slotted channel can significantly increase performance [2];

I furthermore, this assumption allows for simpler discrete mathematics to be used in

the analysis of the system,.i

It (2) Ile aggregate arrival process from the user population to the network is Poisson -

distributed. The number of users generating packets for transmission in any one '

channel slot is, therefore, a Poisson random variable. This assumption has been

shown [3] provide lower bounds on performance among models for independent

and identically distributed users. The mean arrival rate to the system is given by the ,,

3 .r

, Poisson parameter (typically represented as X.) and has units of packets/slot. ,

(3) Transmissions within the network are received correctly with probability I if only

one transmission is attempted in the network during a specific time slot. If two or

more users transmit during the same time slot all information is assumed lost and all '
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users must retransmit their packets. This model is sometimes referred to as the

perfect reception/collision model. A modification to the usual reception/collision
4

model is considered below.

(4) Errorless, instantaneous feedback describing the outcome of the current slot is

assumed available to all users in the network. Ternary feedback is often used which

allows for all users to identify successful slots (S), collisions (C), or empty slots (E).

Binary (collision or non-collision) feedback is also sometimes employed at the

expense of a reduction in performance. Appropriate modifications to the feedback

for the networks considered herein will be presented. In particular the effect of

augmenting the feedback with the identity of the successful packet will be

considered. S

(5) All users are assumed to be full sensing. This implies that all users in the network

have been observing the network operations and feedback since the network began %

operating. This might appear initially as a rather unrealistic assumption. However,

protocols may be designed so that new users to the system can become

synchronized to the algorithm operations after a short delay. I

(6) All packets are assumed successfully transmitted after some delay. This assumption

implies that packets involved in collisions are retransmitted until they are

successful. For many communication networks this might seem an obvious and

strict requirement; however, some networks such as those collecting sensor data

may not require all packets generated to be successfully transmitted. Instead a V..
lp'



lower limit might be imposed on the fraction of successfully transmitted packets.

This possibility is explored herein.

For the idealized network postulated above a multitude of random-access

algorithms have been presented and analyzed ( for example [41, [51, [61 ). 'Me primary "

import of this work is to analyze algorithms appropriate for network environments with

capture. Capture occurs when one packet is successfully received in a slot wherein two

or more users attempted transmission. Note this relaxes the rather pessimistic ,

assumption in (3) that no information is exchanged in the presence of multiple

transmissions. In this paper capture is modeled as a probabilistic mechanism. ,

Deterministic or perfect capture has also been considered (for example, [15]). Specific

features of the capture environment and some brief justifications are presented in Chapter..,

2. Chapters 3 and 4 describe and analyze two random-access algorithms for different .-.

-S.,

environments with capture. The basic analytical framework and systems of equations

Appendicies I and I. Chapter 5 presents conclusions on the results obtained in the

previous chapters. d([)
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CHAPTER 2

System Models for the Capture Environment

This chapter presents the details of the capture environment introduced in Chapter

1. Systems with capture are presented from two viewpoints. First, capture is viewed as a

system attribute created via system design. This may be seen as a more sophisticated

system than that described in Chapter I and it is seen that with the addition of enriched

feedback such a system is capable of high-throughput, low-delay performance. Second,

capture is assumed to be a system characteristic that is imposed on the system due to

other design requirements for the system. This might be seen in a network suitable for

strategic scenarios. A simple algorithm that operates with only ternary feedback is

investigated for this environment.

2.1 System Designs to Create Capture

As will be demonstrated in Chapter 3, communication networks that can exploit

capture are capable of significantly better performance than networks without capture.

However, significant increases in the complexity and capacity of the feedback channel

are required. Several authors have investigated random-access algorithms with capture

and enriched feedback, and have reported significant performance improvements (7], [81,

[9]. It is, therefore, reasonable to design a more expensive system that allows for

capture. Certain spread-spectrum encoding techniques are candidates for capture

6
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systems since transmissions received with slight time-delay differences might be decoded

separately. Some authors [71 have proposed a technique wherein each user randomly S

selects its transmission power according to some predescribed rule. Thus, users

transmitting at higher power levels in any one slot are more likely to be captured than

lower power transmissions. However, in many networks with large numbers of users

transmission power is an expensive commodity. Requiring each user to use a wide range

of transmission powers ( 90 dB in [7]), therefore, seems impractical.

A method of achieving capture via time randomization proposed by Davis and

Gronemeyer [81 appears as a practical method of achieving capture. In their scheme a

small time-randomization interval is added to the beginning of each slot. Thus, slots are

slightly longer in duration than packets; however, significant increases in system S

throughput per slot can more than compensate for this small amount of overhead. A user ,

desiring to transmit in any slot then chooses a random starting time for his packet

according to a uniform distribution on [0, tr]. If the first two transmissions in any given ,.

slot are separated by more than t1 , where t, is a system design parameter, then the first

packet transmitted is successfully received and capture occurs. The other users

transmitting in the capture slot are not captured and must, therefore, retransmit their -

packets in subsequent slots. Figure 2.1 shows an example slot for this scheme wherein "5'."

two users attempt transmission. In this example if x -_ to, packet 1 is captured. For this S

system the probability of capture conditioned on k users transmitting may be found to be
, p

Pk k,-1 - (2.

Ad .~ . . .'. .,' .5I .IfS .~ .' . '
5
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The above expression indicates systems that can capture a packet with only a small time

offset from the following packets (that is, tc small) can achieve capture with high

probability in low-multiplicity collisions. The randomization interval, tr, could also be

increased; however, this lowers the overall capacity of the system since a larger amount

of time is spent transmitting each packet.

2.2 Systems Where Capture is Imposed

In some packet radio systems capture may be an effect imposed by other system

design considerations. An example of such an environment is a mobile packet radio net

that is subject to severe Rayleigh fading and/or other interference. In such circumstances

the communication media is time varying; thus, different users would be more likely to '..

be captured during different time intervals. In the presence of multiple transmissions one

or more of the signals may be subject to such severe fading that they are undetected by

the central receiver. In this case a single successful transmission is indistinguishable

from a capture in the presence of multiple transmissions. Furthermore, single

transmissions may be received correctly with probability less than one in such systems.

These considerations imply the design of a simple ternary-feedback algorithm

appropriate for operation under stressed conditions.

2.3 Generalized Capture Model

Throughout the analysis performed herein a generalized capture model is assumed

where

'
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p(capture I k simultaneous transmissions) = pqk -

The set (Pk = pqkltl) defined above determines the set of "capture probabilities" for

the system, and represents approximately a variety of capture environments. Note that

p=l for the case where a single transmission is successfully received with probability 1.

The parameter q is a system characteristic. For p=l and q - 1 the system achieves near

perfect capture in any slot where 1 or more users transmits. The case p= I and q--O is the

typical perfect reception no-capture system usually considered in analysis of multiaccess

systems. This set of capture probabilities is easily parameterized and has the flexibility p

to represent randomized systems such as in [8] as well as the effects of noise (p * 1).

Random-access algorithms are developed for two different types of feedback in the

capture environment.

(1) In Chapter 3 a random-access algorithm is developed that assumes the identity of a p

captured packet is broadcast to the users along with the usual ternary feedback

discussed in Chapter 1. Thus, when there are multiple transmissions in a slot and
I

one of the packets is captured, a S feedback as well as the identity of the captured 2

packet is broadcast to all users. This clearly implies an enriched feedback

capability since the feedback is no longer ternary. For a system of N users this

implies a bandwidth expansion of approximately log N in the feedback channel.

This type of enriched feedback would likely be incorporated into a system designed

to create capture as described above.
a%
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(2) In Chapter 4 a random-access algorithm is presented that operates in capture using

only ternary feedback. In the design and analysis of this algorithm it is assumed

that the receiver cannot distinguish between a single successful transmission and a

capture in the presence of multiple transmissions. Moreover in contrast to the

environment in (1), users themselves cannot discern the identity of the successful

packet. This is, indeed, a very pessimistic system, but one may that may be realistic

for stressed or strategic systems as mentioned above.

For each of the above cases appropriate window random-access algorithms are

proposed and analyzed. These algorithms are essentially modifications of the algorithm

in (10]. For the enriched-feedback case the algorithm proposed takes advantage of the

higher-level feedback to provide higher throughputs and low delays as the probability of

capture increases. For the case with only ternary feedback it is recognized that a user can

never be certain with probability 1 that its packet was successfully received. It is,

therefore, necessary to allow for some portion of the traffic input to the algorithm to be

lost without ever being successfully transmitted. An algorithm is developed that allows a

I trade-off between the fraction of lost packets and delays.

Ill .



CHAPTER 3

An Algorithm for Enriched Feedback

This chapter describes the design and analysis of a random-access algorithm

suitable for capture environments and enriched feedback. For comparison a modification

of the well-known Capetanakis dynamic algorithm [4 is also considered an analyzed.

3.1 Description of Algorithm for Enriched Feedback

Considering the system model in Chapters 1 and 2, we adopt a modification of the

window RAA in [10]. The modification is necessary since when a user transmits in a slot

and observes an S feedback, the user decides whether or not its own packet was

successful ( based on the packet i.d. in the feedback), and whether or not it must

retransmit the current packet. We call the algorithm the Modified Two Cell Window

Algorithm (MTCWA). We first state its operations; subsequently, we discuss its

operational characteristics and its differences from the algorithm in [101. -

The MTCWA utilizes a window of length A. Let t be a time instant such that, for

some t1 <t all the packet arrivals in (0, t1 ] have been successfully transmitted and there is

no information regarding the arrival interval ( t, t], and such that t corresponds to the

beginning of some slot. The instant t is called a collision resolution point (CRP), the

arrival interval ( 0, t1 ] is called a "resolved interval", and the quantity tj - t is called the

"lag at t". In slot t the packet arrivals in (ti. t2 A mLin(t 1 + A,t)] attempt transmission, and S

2s
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the arrival interval (t1 , t21 is called the "examined interval". The examined interval is

resolved when all the arrivals in it have been successfully received by the receiver and

this event is known to all users. Until (ti, t2] is resolved no arrivals in (t2 . c) are

allowed transmission. The time period required for the resolution of an examined %

interval is called the Collision Resolution Interval (CRI). The algorithm rules are as

follows:

1. If the examined interval (t1, t2] contains zero packets, then the CRI lasts one slot,

Aand a new examined interval (t2, t3  mmin (t2 + A,t+l)] is selected at t+l.
"'p

2. If the examined interval (t1 t2] contains one packet and xt = S, then slot t+1 is

wasted, with xtjl = E, so that it becomes known to all users that the examined S

interval has been resolved. Thus, the CRI lasts two slots, and a new examined

interval is selected at t+2.

3. If the examined interval (tj, t2 ] contains at least one packet and xt = C, then the CRI

lasts at least three slots. During the time period that the CRI lasts each involved

user implements the algorithm rules independently via the use of a counter. Given

some user the value of his counter at time t is denoted rt, where r, equals either 1 or

2. The utilization and updating of the counter values and the identification of the

slot when the CRI ends, are as follows:

3.1 The user transmits in lot t, if and only if rt = 1.

3 c'n

3.2 The counter values are updated as follows:
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(a) If x,_1 = E or S and rt- =2, then rt =1.

(b) If xt- 1 = C and rt- 1 = 2, then rt = 2.

(c) If xt_1 - S, rt-i = 1, and the user identifies capture for himself,

then his captured packet departs the system. 0

(d) If xt_ 1 = S, r,_1 = 1, and the user identifies no capture for

himself, then rt = 1.

(e) If xt- 1 = C and rt_1 = 1, then

I ihprobability 0.5
rt = 2, with probability 0.5

The CRI ends at the beginning of slot t, if and only if xt-1 = E and x, 2 = E d.

or S, and there has been no empty or successful slot followed by an empty

slot pattern previously occurred during the CRI. That is, the CRI ends the

first time after its beginning, that a noncollision slot is followed by an empty N.

slot.
-

We note that the operations of the MTCWA within a CRI can be depicted by a

two-cell stack, where at each time t, cell 1 contains the transmitting users (those with

r, = 1), and cell 2 contains the withholding users (those with rt = 2). As dictated by the

algorithm rules following a noncollision slot (E or S slot), all the nontransmitted packets
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in the stack move to the transmission cell 1, and cell 2 becomes empty. Thus, given

some CRI whose length is more than one slot ( that is, a nonempty examined interval),

the first time that a noncollision slot is followed by an empty slot all users come to the

knowledge that the stack is empty; therefore, that the CRI has ended.

As mentioned earlier the MTCWA is a modification of the algorithm in [101, where

the latter operates with binary, collision versus noncotlision, feedback. The difference

between the two algorithms lies in steps 2, 3.2.(c), and 3.2.(d) in the description of the

MTCWA, and in the identification of the slot when some CRI, whose length is more than

one slot ends. Indeed, the algorithm in [10] was designed for systems where a success

feedback implies single transmission. In the unmodified algorithm a CRI whose first slot

is success lasts one slot, and if during some CRI xt = noncollision and rt = 1 occurs, then

the single transmission departs the system at slot t. In addition in the algorithm in [101, a

CRI whose first slot is a collision slot ends with two consecutive noncollision slots, such

that the last slot in the pair is not necessarily empty. As compared to the algorithm in

[101 the MTCWA wastes occasionally an additional empty slot at the end of each CRI.

This "wasted slot" is an an empty slot appended to the end of CRIs so that users can

identify the end of the CRI. It will be demonstrated in Section 3.2 that the beneficial

effects of capture more than compensate for these wasted slots.

We point out that in environments with no capture and sure success when single

transmissions occur, the algorithm in [10] attains throughput 0.429, which is the same

with that attained by the Capetanakis dynamic algorithm [4]. As compared to the latter,
3

the algorithm in [10] has better delay characteristics, and superior performance in the

presence of feedback errors. Furthermore, this algorithm can be easily modified to

5
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operate in limited feedback sensing environments, and in contrast to Gallager's algorithm

[5], it operates in environments where the Poisson user model is not valid.

0

3.2 Algorithm Analysis

Let Pk denote the probability of capture, given k simultaneous transmissions, where 0

the set {Pk }k, is as in Chapter 2. Let us define,

0 'nsk ; L,' k-n: The expected number of slots needed by the MTCWA for the 1

successful transmission of k packets, given that n of the k packets Iv

have counter values equal to 1 and that the remaining k-n packets

have counter values equal to 2.-.

The algorithm rules in Section 3.1 induce the following recursions; where w.p.

means with probability.

4,0 = 1, I-Ok = 1 + Lk0 ; k>.1

1 + Lk-l. 0 ; w.p. P1  S

k 1 ; L.k- =' 1 +L,k_. ; w.p. 2 (l-P 1 ) (3.1)

1 + LOA ; w.p. - (1-P 1 ) a'.

2

2 -n!!k 1I + Lk..lo w.p. Pn
; Lyk-n 1 + i.k-i ; w.p. 2-n(1I-Pn), 0<i_<n

We are concerned with the throughput and delay analysis of the algorithm in the 0

presence of the limit Poisson user model. As discussed in [3] the latter user model

U U ~ b U U - U ~ .P
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provides a performance lower bound for the MTCWA within the class of independent V.

and identical users whose packet-generating process is memoryless. Let X denote the

intensity of the Poisson traffic process. Given the window A of the algorithm, let

E(I IA, d} denote the expected length of a CRI, given that it starts with an examined

interval of length A and with a lag d. Then for {Ll.0 ) as in (3.1), we obtain:

S(%)k(32E{lI A,d) =C" (3.2)

Let the system start operating at time zero, and let us consider the sequence in time

of lags that are induced by the algorithm. Let Ci denote the length of the i-th lag, where

i21. The first lag corresponds to the empty slot zero; thus, C1 = 1. In addition the

sequence C; i21 is a Markov chain whose state space is at most countable. Let Dn

denote the delay experienced by the n-th successful transmission. Let the sequence

TL i l be defined as follows: Each Ti corresponds to the beginning of some slot, and

T, = 1. Also, each Ti corresponds to the ending point of a length-one lag. Ti j is then

the ending point of the first after Ti unity length lag. Let Ri i21 denote the number of

successfully transmitted packets in the interval (Ti, Ti+1 ]. Let Qi = Ri~1 - Ri. The

sequence Qi, il is a sequence of i.i.d. random variables; thus, Ri (i_>l), is a renewal

process. In addition the delay process Dn (n_>l) induced by the algorithm is regenerative

with respect to the process Ri, i>l and the distribution of Qi is nonperiodic since

P(Q = 1) > 0.

Let us define,

4 S
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0

Z=E(Q1 ), W=E[ Di} (3.3)

From the regenerative arguments in [6], it follows that the expected -steady-state

delay, D per successfully transmitted packet is given by the following expression:

D = WZ -' (3.4)
The effective computation of D relies on the successful derivation of upper and lower

bounds on the quantities W and Z. Those bounds are found via the utilization of the

methodology in [5], in conjunction with the quantities in Appendix I. The bounds on W

and Z can be found only if:

A>E(IIA, d), (3.5)

where E{lIA, d) is as in (3.2), and where (3.5) determines the stability region of the

algorithm. Note the delay per packet transmitted at time t is on the order of the lag at t;

recall the transitions in time of the lag define a Markov chain. Satisfaction of (3.5)

guarantees a negative drift for this chain, which from Pakes Lemma [19] insures the

ergodicity of the chain.

For various values of the probabilities p and q, which generate the set {Pk} )i> of

capture probabilities, we computed the optimal window sizes A* as well as lower and

upper bounds, X* and Xu. respectively, on the throughput X* of the algorithm. We also

computed lower and upper bounds, D' and Du respectively, on the expected per packet

delay D for various Poisson rates X within the corresponding stability regions of the

algorithm. We include the window sizes and the bounds on the throughputs in Table 3.1..

* In Table 3.2 we include delay bounds. -

•1
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o i q ____ ___ _=_

1 0 3.59 0.3404
0.99 0 3.60 0.3381
0.95 0 3.65 0.3283
0.9 0 3.73 0.3159 0
0.8 0 3.90 02900
0.7 0 4.08 0.2626
0.6 0 4.33 0.2335 % .,

0.5 0 4.62 0.2.T4
1 0.2 3.61 0.34i9

0.99 0.2 3.63 0.3464
0.95 0.2 3.69 0.3364
0.9 0.2 3.76 0.3235
0.5 0.2 3.94 0.2968
0.7 0.2 4.14 0.2684
0.6 0.2 4.38 0.2384
0.5 0.2 4.70 0.2064
1 0.4 3.76 0.3767
0.99 0.4 3.77 0.3740
0.95 0.4 3.84 0.3623 -
0.9 0.4 3.93 0.3484
0.3 0.4 4.12 0.3187
0.7 0.4 4.36 0-2373 "
0.6 0.4 4.64 0.25.42
0.5 0.4 5.02 0.2192
1 0.6 4.12 0.4311
0.99 0.6 4.5 0.4277
0.95 0.6 4.23 0.4141
0.9 0.6 4.35 0.3968
0.8 0.6 4.62 0.3609
0.7 0.6 4.93 0.3234
0.6 0.6 5.31 0.284-
0.5 0.6 5.82 0.2431
1 0.8 5.14 0.5364
0.99 0.8 5.17 05319
0.95 0.8 5.33 0.5133
0.9 0.8 5.53 0.4898
0.8 0.8 6.01 0.4415
0.7 0.8 6.59 0.3916
0.6 0.8 7.31 0.3401
0.5 0.3 8.24 0.2371
1 0.9 6.60 0.6388 S
0.99 0.9 6.66 0.6330
0.95 0.9 6.92 0.6096
0.9 0.9 7.28 0.5799
0.8 0.9 8.12 0.5193
0.7 0.9 9.19 0.4572 %
0.6 0.9 10.59 0.3937
0.5 0.9 12.47 0.3291

Table 3.1 0

Optimal Window Sizes and Throughputs for the MTCWA %I

VV.
Sfz_
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Delay Bounds for the MTCWA
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In both Tables we include the p=l and q--O case, which represents sure success in

the presence of single transmissions and lack of capture in the presence of multiple

transmissions. For this case we note the inferior performance of the MTCWA as

compared to the unmodified version of the algorithm in [101. In Figure 3.1 we plot the

upper bound on the throughput against q for various values of the probability p. In

Figure 3.2 we plot the upper bound on the throughput against p > 1/2 for various values

of the probability q. In Figure 3.3 we plot the delay upper bound Du against the Poisson

traffic intensity X for various values of the probabilities p and q.

From Table 3.1 we observe that in the absence of capture and in the presence of

sure success of a single transmission, the MTCWA attains throughput 0.3404; the

throughput of the unmodified algorithm is 0.429. This loss in throughput is

overcompensated for large enough values of the probabilities p and q. As the latter

probabilities increase, the throughput of the MTCWA increases monotonically (see Table

3.1, and Figures 3.1 and 3.2) remaining strictly less than one. As observed from Table

3.1, the optimal window sizes increase with increasing q. This occurs since increasing

the probability of capture makes it more efficient to have multiple packets per window,

thereby, lessening the probability of empty transmission slots. From Table 3.2 and

Figure 3.3 we observe that when the value of the probability q is large, then the expected

per packet delays for small Poisson intensities increase as compared to those

corresponding to smaller q values. This is expected since as q approaches the value 1 the

MTCWA basically operates as the TDMA algorithm, which notoriously induces high

delays in the presence of low traffic rates.

, - *
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We note that the MTCWA maintains many of the advantageous properties of the

original algorithm. In particular it can be easily modified to operate in limited-sensing

environments, it is highly robust in the presence of feedback errors, and it operates in ,

environments where the Poisson user model is not valid.

3.3 The Capetanakis Algorithm in the Capture Environment

Let us consider the system model in Chapter 1, where the feedback broadcast is

ternary, and is augmented by the identification of the successful packet. In this

environment a S feedback may correspond to a capture; thus, 1 user is successful and the

other users transmitting in that slot must retransmit their packets. The dynamic

algorithm of Capetanakis [4], therefore, leads to packet losses unless appropriately

modified. The modification is needed for the distinction by all users between success

and single transmission versus capture and multiple transmissions. Two reasonable S

possibilities are the following: (1) After each slot with feedback S, instruct all the users

who did not transmit within it to withhold, and the users who might have transmitted

within it and were not captured to retransmit. Continue this process until the first non-S

slot appears. Otherwise, the algorithm operates as in [4]. (2) After each slot with

feedback S, all the users who might have transmitted within it and were not captured

continue to transmit until either an'E or C feedback occurs. If C occurs the algorithm

operates as in [4]. If E is observed all users in the original interval have then been

successfully received and a new interval is selected.
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Among the above two modifications of the Capetanakis dynamic algorithm, theAmong*

second is generally more efficient. A form of this modification that can be easily

implemented and analyzed is the algorithm in Section 3.2. In this manner the two-cell

algorithm in [10] may be seen itself to be a modification of the Capetanakis dynamic

algorithm [4].

'* The first modification described is a more straightforward change to the algorithm

in [4] and will be referred to as modification-1 of the Capetanakis dynamic algorithm.

The first modification induces the following recursions, where Lk denotes the expected

number of slots needed for the resolution of a multiplicity-k collision:
.J.!

Lo = 1

2 ; w.p. PL* = 2+L 1 ; w.p. (1-P1 ) (36)

2+ Lkl ; w.p. Pk
k2; Lk ] ,+Lk-11 + Li + Lk i ; w.p.(l-Pk) 2 -k, 0:< i k

From the recursions in (3.6) and via the same methodology as that used for the

analysis of the MTCWA, we computed optimal window sizes and tight throughput and

delay bounds. Bounds were computed for the limit Poisson user model and for various

values of the probabilities p and q, where Pk = pq-t. We include the optimal window

sizes and the throughput bounds in Table 3.3. In Figure 3.4 we plot throughput against q

for various values of the probability p for both the MTCWA and modification-l of the

Capetanakis dynamic algorithm. In Figure 3.5 we plot throughput against p for both the

above algorithms and various q values. Finally in Figure 3.6, we plot the delays induced
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P I _ _"_ =I A -1A..,

0.99 0 3.85 0.2986
0.95 0 3.95 0.2912 0
0.9 0 4.08 0.2317
0.8 0 4.40 0.2612
0.7 0 4.81 0.:239
0.6 0 5.36 0.2145
0.5 0 6.13 0.1877
1.0 0.2 3.36 0.3068
0.99 0.2 3.88 0..049
0.95 0.2 3.98 0.2972
0.9 0.2 4.12 0.2871
0.8 0.2 4.45 0.2657
0.7 0.2 4.87 02426
0.6 0.2 5.43 0.2174
0.5 0.2 6.22 0.1898
1.0 0.4 3.98 0.3260
0.99 0.4 4.01 0.3238 0
0.95 0.4 4.13 0.3150
0.9 0.4 4.28 0.3036
0.8 0.4 4.64 0.2796
0.7 0.4 5.10 0.2539
0.6 0.4 5.70 0.2262
0.5 0.4 6.57 0.1964
1.0 0.6 4.24 0.3584 0
0.99 0.6 4.28 0.3558
0.95 0.6 4.41 0.3452
0.9 0.6 4.59 0.3317
0.8 0.6 5.03 0.3036
0.7 0.6 5.59 02737
0.6 0.6 6.32 02420
0.5 0.6 7.37 0.2083 " •

1.0 0.8 4.81 0.4076
0.99 0.3 4.86 0.4045
0.95 0.8 5.05 0.3918
0.9 0.8 5.33 0.3755
0.8 0.8 5.97 0.3416
0.7 0.8 6.80 0.3057
0.6 0.8 7.93 0.2679
0.5 0.8 9.53 0.2282
1.0 0.9 5.48 0.44310.99 0.9
0.90.9.9 5.56 0.4397
0.95 0.9 5.85 0.4258
0.9 0.9 6.17 0.4079
0.8 0.9 7.28 0.3704
0.7 0.9 8.64 0.3306
0.6 0.9 10.56 02885
0.5 0.9 13.35 0.2442

Table 3.3

Optimal Window Sizes and Throughputs for Modification.I of the
Capetanakis Dynamic Algorithm

S
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S

by the two algorithms as functions of the Poisson traffic intensity X, and for various p and

q values.

Comparing Table 3.3, Figures 3.4 and 3.5 with Table 3.1, Figures 3.1 and 3.2, as

well as Figure 3.3 with Figure 3.6, we observe the uniformly worse performance of the

Capetanakis modification-I algorithm compared to the MTCWA. For the same set of

capture probabilities the MTCWA provides higher throughputs than does the modified

Capetanakis algorithm. Moreover, the MTCWA exhibits uniformly lower delays.

Furthermore, as with the dynamic algorithm in [4] modification-I of the Capetanakis

dynamic algorithm in this section is less robust to feedback errors than is the MTCWA.

3.4 Conclusions for the MTCWA

We considered a general communication network with a probabilistic capture

mechanism. We assumed ternary feedback augmented by the identification of the

successful packet, and a generalized capture model. We proposed and analyzed a stable

random-access algorithm (MTCWA), which is a modification of the two-cell algorithm

in [10]. The MTCWA can attain quite high throughput and low delays when capture .

occurs with high probability. In addition it is highly robust in the presence of feedback

errors, it can be easily modified to operate in limited sensing environments, and it .f

operates in systems where the Poisson user model is not valid.

I-

, , , < , -, .



CHAPTER 4

An Algorithm for Simple Ternary Feedback

In the previous chapter a high-performance, random-access algorithm was

developed, which exploited captures in the presence of multiple transmissions. However,

an important assumption in the previous analysis was the existence of an enriched

feedback scheme that broadcast to all users the identity of the captured packet. In this

chapter an algorithm is proposed for a system with only ternary feedback. This

algorithm would be appropriate for networks where capture is an undesired and possibly

0 undetectable feature. Furthermore, only a small-bandwidth, ternary-feedback channel is a

required to implement the algorithm.

4.1 Description of Algorithm for Simple Ternary Feedback

The proposed algorithm is as in [10] with the following modification:

Each S slot of the original algorithm expands here to m+1 slots. In particular if

xt = S, then each of the users that transmitted in slot t retransmits in one of the

slots t+ ..., t+m, with probability 1/m. Just after slot t+m all the packets that

transmitted in slot t depart the §ystem, and the original algorithm resumes its

operations at time t+m+ 1.

For completeness we describe here the operations of the algorithm. Let t be a time

instant that corresponds to the beginning of some slot, and let tj be such that t1 <t and all

32
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the packet arrivals in (O,tl] have departed at t, and there is no information regarding the

arrival interval (tl ,t]. Then t is a collision resolution point (CRP), and tj - t is the lag at

t. The algorithm utilizes a window of length A. In slot t the packet arrivals in

A
(tl,t 2 -min(t+A,t)] attempt transmission, and the arrival interval (tl,t 2 ] is called the

"examined interval." The examined interval is resolved when all the arrivals in it have

departed the system, and this event is known to all users in the system. Until (t ,t 2 ] is

resolved no arrivals in [t 2 ,oo) are allowed transmission, and the time period required for

the resolution of an examined interval is called a collision resolution interval (CRI). The

algorithm rules are implemented independently by each user via a counter. The counter

value at time t is denoted rt , where rt equals either 0, 1, or 2. The counter values are used

and updated as follows:

1. A user transmits in some slot t, if and only if rt=l.

2. At time t when the CRI starts, all users with arrivals in (tl ,t2 ] set r, = 1.

(a) If xt = E, then the examined interval is resolved at t, and a new CRI 'S

starts at t+1 with the examined interval (t2 min(t2+A,t2+l)].

(b) If xt = S, then the CRI ends at t+m, and a new CRI starts at t+m+l

with the examined interval (t2 , min(t 2+A,t2+1+m)]. Within the length

m+l CRI, a user who transmitted in slot t sets:

rt+k = C' Vk : 0<.k~j, rtj+1 = 1, with probability 1/m, where 0<j_<m-l.

The corresponding packet departs then the system at time t+j+l,

independently of if it were successfully transmitted or not.

N/

A 'A 'A 'A A. ~V - 1.'. .1! 3 ' 'j ~ ~ ,,.A.-V 'S I:
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(c) If xt = C, then at time t+1, each user who transmitted in t sets:

fI ; with probability 1/2
rt+l 2 ; with probability 1/2

3. Given a CRI whose first slot is a collision, let {ti }i_> be a sequence of slots in

the CRI defined as follows: t1 is the first slot from the beginning, such that

x= S. tj+ is the first slot after ti+m, such that xt. = S. Then,
1

(a) If r,. = 2, then, --

r,. +j=2, Vj 1 <j 5m

r.+m+l =1 0

(b) If r..= 1, then,

,4.¢

rt+k =0; Vk:O 4..

}with probability l/m ,"

* • I

and the packet departs then the system at time ti+j+l. .I-

-"4"

0 (c) If t ti +j for some l_<j~m and some ti in {ti}ii>, then:

(i) If rt = 2 and xt = C, then set rt+ 1 =2. I
(ii) If rt = 1 and xt = C, then set:
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1 ; h2 ; with probability 1/2rt+i 2 ; with probability 1/2

(iii) If r =2 and xt = E, then setr+ 1 = 1.

Let us consider the sequence {tijji of success slots, within a CRI, as defined in

Step 3 of the algorithm description. The m slots following each ti are basically used by

the algorithm as nonfeedback or transparent slots. We will call a pattern of m+1

consecutive slots which is headed by one of the slots in the sequence {ti}j>j an

"extended-S slot." From the description of the algorithm we easily conclude that the

following possibilities exist regarding the nature of a CRI: (a) A CRI may consist of a

single empty slot. (b) A CRI may consist of a single extended-S slot. (c) A CRI which

begins with a collision slot ends with either two consecutive extended-S slots, or an

extended-S slot followed by an empty slot, or an empty slot followed by an extended-S

slot.

4.2 Analysis of Algorithm

Let Pk = pqk-1, k-.1, denote the probability of capture, given k simultaneous

transmissions. We will assume that in the event of capture each of the k packets is

captured with probability 1/k. Let us then define:

0<n k.<.O; (n,k-n): The event that n packets have counter values equal to 1 and k-n

packets have counter values equal to 2, during a CRI which starts

with a collision slot.

9 5



-IVY K- - .

36

0<n:k<O Ln(m)n. The expected number of slots needed for the resolution of' then,k-n"

event (nk-n), when the algorithm utilizes the integer m in steps 3.a

and 3.b of its description.

0.n k<O N (m). The expected number of lost packets during the resolution of the

event (n,k-n), when the algorithm utilizes the integer m in Steps

3.a and 3.b of its operation.

k> 1; X n): The expected number of successfully transmitted packets given k

simultaneous transmissions with capture, and given that after the ,

capture event, each of the k packets is transmitted within one of m

slots, with probability 1/m.

pek}: -Given that the algorithm utilizes the integer m in steps 3.a and 3.b

of its operation, given k simultaneous transmissions with capture,

given that after the initial capture event each of the k packets is

transmitted within one of the in slots with probability 1/m, the

probability that in any one of the m slots a packet is captured and

this packet is different than that captured at the initial capture
Y.

event.

0:5k; L~): The expected length of a CRI that starts with k simultaneous

transmissions, when the algorithm utilizes the integer m in Steps

3.a and 3.b of its operation.

0<__k; N rn}: The expected number of lost packets throughout the length of a

CRI which starts with k simultaneous transmissions, when the

N '.
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algorithm utilizes the integer m in Steps 3.a and 3.b of its

operation.

The algorithm rules induce the following recursions, where w.p. means with

probability.

LO, o0= 1 , Lok = l+Lk0 ; k>1

k_ 1 ;nmk-n = 1 + L ,O ; w.p.[iJ 2-(1-Pn),0 < i<n (4.1)

N d= 0, N 'k= N 9 ;k>l
n~> 1" -X (m) + N mn)o; w.p. Pn4

k> N(m) (4.2)

k1 n-n Nm)i ;w.p. 2-n (1-Pn) 0<i<n

k>2 A m- k-I 1 k--i 1 k 1 _1 k-i-i i
1 mi-1[-1) [T

>c m i J m M m iJ "'- i+

X 0) 1; k l, Xm) = 1 ; m>O

XV )  I + --- Pk"; k->l (4.4)

k

k-1. ; x~m) = 1 + mp(.)

N~m) = Nf.d ; k .O (4.5) S

Lam) -1, L m) P Pk (1+m) + ( 1-Pk) I + 2- Qk-i L (4.6)

Consider the algorithm in Section 4.1, and let the system start operating at time

zero. Let us consider the sequence (in time) of lags induced by the algorithm, and let Ci I
00. .. .-, -. -. . 0- -,,
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denote the length of the i-th lag, where iL1. The first lag corresponds to the empty slot

zero; thus, C1 = 1. In addition the sequence Cj,i. is a Markov chain whose state space

is at most countable. Let D, denote the delay experienced by the n-th successfully

transmitted packet arrival as induced by the algorithm; that is, the time between the

arrival instant of the packet and the completion of its successful transmission. Let the

sequence Ti, i_>l, be defined as follows: Each Ti corresponds to the beginning of some

slot, and T,=1. Each Ti also corresponds to the ending point of a length-one lag, and TiIl

is the first after Ti such point. Let Ri, iL1, and Fi, i2:1, denote respectively the number of

successfully transmitted and the number of rejected packets in the time interval (0, Ti]. N

Then Q, = Ri+l- Ri, i>l, and Gi = Fi+1 - Fi, i>_l, denote respectively the number of

successfully transmitted and the number of rejected packets in the interval (Ti. Ti+1 ].

The sequences Q, i2:l, and Gi, i>l, are sequences of i.i.d. random variables when the

input traffic process is memoryless (such as Poisson); thus, the sequences Ri i2:1, and

Fi, il, are renewal processes. In addition the delay process Dn, n_>l, induced by the

algorithm is regenerative with respect to the process Ri, i*_l, and the process Qi i2:l is

nonperiodic since P(Qi = 1)>O.

Let us consider Poisson input traffic with intensity X. Let p and D be, respectively,

the fraction of successfully transmitted packets and the expected steady-state delay per

successfully transmitted packet. Let us define:

Q1

Z= E{Q 1  , W = E Di, H= E(T 2 -T, (4.7)
i=lud

From the regenerative arguments in [3] we conclude:

U,
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p= Z(X. H)-' ,

(4.8)

D = WZ"-t  -

The pertinent equations for the evaluation of the quantities Z, W, and H in (4.7), and

the subsequent derivation of upper and lower bounds on p and D are given in Appendix

H.

Given system probabilities p and q, we may select the algorithm parameters m and

A to fulfill one of the following two objectives.

(1) Maximize the region of the Poisson traffic intensities, for which

the expected delays of the successfully transmitted packets are

finite.

(2) Given some lower bound p* on the fraction p of the successfully
pn

transmitted packets, maximize the region of the Poisson traffic

intensities that satisfy this bound.

Towards the fulfillment of the first objective, we optimized with respect to the

window size A for various values of the parameter m. We computed the expected delay

per successfully transmitted packet, and the fraction of the successfully transmitted

packets for various values of the Poisson traffic intensity X. Towards the fulfillment of N'

the second objective, we optimized with respect to the window size A for various values

of the parameter m and the bound p*. Delay bounds were also computed on the expected

delay per successfully transmitted packet for various values of the Poisson traffic

010
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intensity X. In all cases we selected p=l, since the properties of our-algorithm are

basically exhibited by the probability (of capture, in substance) q. In the process we

computed bounds on the quantities p and D for various values of the parameters q, m, A,

and X. We include selective such results in Table 4.1, where Pi, Put D, and Du denote

lower and upper bounds on p and lower and upper bounds on D, respectively.

4.3 Numerical Results, Conclusions, and Comparisons

For the sake of comparison the performance of the temary-feedback algorithm is

compared with that of a completely passive system with capture. In the passive system

packets are generated according to a Poisson distribution per slot and are transmitted at

the beginning of the next slot; thus, average delay for successful transmissions is always

1.5 slots. Retransmissions are not allowed as the passive system operates without

feedback. For a given set of p, q, and X values the fraction of successfully transmitted

packets for the passive system may be found in closed form as p = X-1 q-1 e-?" (ex" -1),

where p is strictly monotonically decreasing with respect to X.

In Figures 4.1, 4.2, 4.3, 4.4, and 4.5, we plot numerical results when the algorithm is

designed to satisfy Objective 1. In Figures 4.6 and 4.7 we plot such results when the

algorithm is designed to satisfy Objective 2. In all figures we also plot the corresponding '.

performance of the passive system for comparison.

In our numerical results we selected the zero, one, and two values of the algorithm

parameter m. We note that for m--O and q--O, the algorithm reduces to that in [10], it is _

stable, and its throughput equals 0.43. From Figures 4.4 and 4.5 we observe that the m--0

e •i



M=0 0.05 1.0 1.0 1.67 1.68
q=0 0.10 1.0 1.0 1.77 1.87
A=2.33 0.20 1.0 1.0 2.41 2.58

0.30 1.0 1.0 4.31 4.52
0.40 1.0 1.0 20.71 23.80

0.10 0.975 1.000 1.69 1.70
M--0 0.20 0.945 0.991 1.89 1.96
q=0.5 0.30 0.912 0.956 2.31 2.48
A=2.0 0.40 0.870 0.912 3.32 3.55

0.50 0.824 0.866 6.05 6.85
m-0 0.10 0.956 1.000 1.58 1.50
q--0.75 0.20 0.917 0.962 1.68 1.70
A-2.0 0.30 0.870 0.914 1.79 1.84

0.40 0.819 0.860 1.88 2.02
m-l 0.10 1.00 1.00 2.16 2.27
q=0 0.20 1.00 1.00 4.34 4.87
A=3.0 0.29 1.00 1.00 45.30 58.20
m=1 0.10 0.973 1.000 1.96 1.98
q=0.5 0.20 0.942 0.990 2.71 2.85
A=3.0 0.30 0.848 0.943 5.20 5.75
m=1 0.10 0.967 1.000 1.72 1.74
q=0.75 0.20 0.912 0.982 1.98 2.09 b

6=3.5 0.30 0.854 0.901 2.44 2.58
0.40 0.793 0.836 3.22 3.42

m=2 0.05 1.00 1.00 2.06 2.07
q=O 0.10 1.00 1.00 2.97 3.10
A=3.5 0.20 1.00 1.00 17.91 19.68
m-2 0.05 0.987 1.00 1.79 1.79
q=0.5 0.10 0.981 1.00 2.39 2.47
A-3.5 0.20 0.944 0.993 5.19 5.34

0.25 0.924 0.972 9.93 11.20
m=2 0.10 0.972 1.000 2.08 2.1
q=0.75 0.20 0.926 0.981 2.88 2.99
A--4.0 0.30 0.868 0.919 4.32 4.49

0.40 0.807 0.855 8.57 9.42

Table 4.1

Bounds on Delay and Success Rate

%
I:
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case provides success rates nearly as high or higher than those in the cases of m=l and

m=2. For example in the low capture probability case of q--0.5, the algorithm with m=O

maintains a higher success rate than the other algorithms for all Poisson traffic rates

above 0.19. Finally it appears that selection of m--O never penalizes the success rate Ap

substantially and, in fact, is often the best choice. From Figures 4.4 and 4.5 we also

0

observe that the success rates induced by a passive system are significantly lower than r

those induced by the algorithm proposed herein. Thus, the simple, ternary-feedback a.

algorithm provides for significant increases in the fraction of successfully transmitted
PS

traffic at the expense of slight increases in delay. From all figures we conclude that the

m--O selection provides the best delays other than the passive system, which exhibits far

worse performance in terms of lost traffic. In addition comparisons between Figures 4.2

and 4.4, and Figures 4.3 and 4.5, lead to the corclusion that the algorithm in this paper,

with m=O, attains delays close to those induced by a passive system for a significant

region of Poisson intensities. Furthermore, it simultaneously outperforms the latter .O

significantly in terms of success rates. The general conclusion drawn from our results is

that the basically unmodified two-cell algorithm in [101 performs quite well in the N

capture environment. One may modify the algorithm as described to increase the success

rate; however, a penalty is clearly paid in terms of delays. Inspection of the success rate

vs. input rate plots displays immediately that there is no uniform trade-off between

delays and success rate.

lop'



CHAPTER 5

Conclusions

The preceding chapters have contained sufficient analysis and conclusions based on

the results presented in each chapter. However, a few final comments are in order.

5.1 The Two-Cell Algorithm Compared to the Capetanakis Dynamic Algorithm

As described in Chapter 3 the two-cell algorithm is essentially a modification of the

Capetanakis dynamic algorithm where the rules of the Capetanakis algorithm have been
0

somewhat simplified. Recall when compared in the no-capture, limit Poisson user model

both algorithms attain throughput of 0.429; however, the two-cell algorithm provides

uniformly better delays. The results in Chapter 3 demonstrate that the more simple

algorithm is more easily and efficiently adapted to the capture environment. It has also

been shown [10] that using ternary feedback the two-cell algorithm is far more robust in S

the presence of feedback errors than is the Capetanakis dynamic algorithm.

5.2 Random-Access Networks with Capture S

It is clear from the results presented in Chapter 3 that a random-access algorithm V

provided with the enriched feedback described can greatly exploit the benefits of capture.

The throughput of the enriched feedback algorithm (MTCWA) increased uniformly as

50
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the probability of capture increased.

The average delay per packet tended to decrease also as the capture parameter q was

increased from 0 to about 0.9. However, delay performance worsened dramatically as q ,

approached 1. This may be explained as follows. The ortimal window size for each set

of (p,q) values was chosen so as to maximize the throughput of the algorithm. As the

probability of capture approaches one, throughput will be maximized by insuring there is

at least one packet in every window. Thus, as (p,q) -- (1,1) the optimal window size

(A*) approaches infinity. Since the average delay per packet is always at least half the

window length for these algorithms, it is clear the average delay will also become

unbounded. Therefore, in a system with very high probability of capture even for high-

multiplicity collisions, a trade-off between throughputs and delays may be necessary. In

practice the window size, A, would likely be chosen so as to minimize delay at a

particular value of the input rate, X.

5.3 Algorithm Sensitivity to Forward-Channel Errors ,s
.5%,

Both the algorithms developed in Chapter 3, the MTCWA and the modified

Capetanakis Algorithm, were analyzed in the presence of forward-channel errors (that is,

p*i). In both cases the throughputs were reduced approximately linearly with p. This ,-,

was to be expected since the throughput is roughly the probability of a correct

transmission per slot. A corresponding increase in the delays was also observed;

however, both algorithms appeared to be reasonably robust in the presence of channel .

errors. These observations appear to justify the paradimatic assumption of an errorless

"I'.h
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forward channel. The ternary feedback algorithm of Chapter 4 was, therefore, not

analyzed in the presence of such errors.

5.4 Systems Costs to Achieve Capture

Since capture has been shown to enhance greatly the performance of random-access

systems, one should logically suspect that it is achieved only at certain costs to the

system. Although this paper has not investigated methods for achieving capture, it is at

least certain that more complex receivers are necessary at central nodes. Since there are S

typically many more "user nodes" than central nodes, this may be a very practical

improvement. Recall that the transmission-power-randomization techniques require

more complex transmitters at all nodes; this implies significant increases in overall

system costs. However, other techniques such as time randomization or spread spectrum

tend to use channel resources (time and bandwidth, respectively) less efficiently than

simpler schemes. It is, therefore, implicit in the analysis presented herein that trade-offs

inevitably exist between capture techniques and other system parameters such as

complexity and capacity.

k€MV
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Appendix I

Analysis of Algorithm for Enriched Feedback

This appendix contains the basic quantities necessary to compute the delay and

throughput of the algorithm in Chapter 3 for enriched feedback.
S

Bounds on the L.,, j, Lengths

Given the set {Pk }k1 of capture probabilities, let us define,

Aj °) = (3-P)(l+P)-1,A 1) = (1-PI)(I+PI)-1 ,A2) = 2P, (1+PI) - '

{AO)}: A( ° ) = [1-2-n(1-Pn)] -1  l+2-(1-Pn)+2-n(1-Pn) A1 A , n>2

[A(')): A(11)= [1-2~-n ~ 2-n (1-Pn){1+~~ A(1)} n :2
- ()[(21) n- r

A( 2)1: A(2) = [1-2(l-Pn)] Pn+2-n(l-Pn) n J A 2 , n>2

i=l

Then, from the expressions in (1.1), we easily find by induction:

L,.kn = A ) + A(') L + A( ) L (.2)

n n k.0 n k-10
Lk.0 = A[°)[1-At) 1 - t + AV2)[1-A -1)f Lk-L0 (1.3) A

It can be found by induction, that given no, there exist constants a, b, and c, such

that,

S



C]
58

An [1-An) 1  an+b; Vn>no

A(' < c< 1 ;V n> no (1.4)

A(2) [1-A(1 )]- 1 5 1 ; V n > no

The bounds in (1.4), in conjunction with (1.3) give:

0 Lko < 27'a k2 + (b+2'a)k-no[b+2-1a(no+1)] +

_2 A(0) AI2)
" Ano + A V k>no (1.5)j-1 l-A , bj+t I 1  -()o +t1 -At '

If E(lIu,d} denotes the expected length of a CRI, given that the length of the

examined interval is u and the lag is d, then,

E{lIu,d}= L1,e -  (Xu)k (1.6)

The bounds in (1.5) are used in the derivation of upper bounds on the expected value

in (1.6). The largest no in (1.5) is selected, the tighter those bounds are. Lower bounds on

(1.6) are derived by truncation of the system.

Bounds on the Quantities W and Z

Let W and Z be as in (3.3), and for the sequence {Ti ) being as in Section 3.2, let us

define,

H = E(T 2 - T (1.7)

For the computation of the expected values W and Z, we also need the computation

of the expected value H in (1.7). Towards that, let us define the following quantities:

'

'

, I,
5'

V,e

if r w-Jr " • -" , " " - " " d' "e " " ". "w a % " - - - " - ,' -" V.."
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S

nu:- The number of packet arrivals in an examined interval whose length is u.

zu: The sum of delays of the n, packets, after the beginning of the CRI.

Vu: The sum of delays of the nu, packets, before the beginning of the CRI.

/U: The number of slots needed to resolve an examined interval whose length S

is u.

hd: The number of slots needed to return to lag equal to one when starting S

from a collision resolution instant with lag d.

wd: The cumulative delay experienced by all the packets that were m

successfully transmitted during the hd slots.

P( I u): Given that the examined interval has length u, the probability that the

corresponding collision resolution interval has length 1.

Hd = E(hd) (1.8)

Wd =E{wd}

We note that H=H1 , W=Wj. and Z=XH. The following recursions are induced by

the algorithm.

I ;if'd = 1
"_ d + hi, ; ifld>l

d>A; hd= /A + hd-A+, (1.9)

Ile
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W'd + Zd; if Id I1'9
1-<d A; Wd= lWd + Zd + WI, if Id >1

d > A; Wd = VA + ZA + (d-A)nA + WdA+,, ,

The above recursions yield the following infinite dimensionality linear systems:

E(1d + H, P(lId) ;1d<A

1--2 ., (1.101)

EIA) +/ d-A+lP(/IA) ;d>A (
LK

E{fd+zd1 + z W l P(/Id) ;1 d<A
1=2

Wd = 00 
(LI)1

E(A + zA + (d-A)nA) + Wd-A+ P(l IA) ;d>A
* =1

L

where, for Poisson traffic intensity X, we have:

E{l} = e - u (Xu)k ( )
k-E( ke--- Lk.0 (1.12)

Also, if Pk(!) denotes the probability that a multiplicity k collision is resolved in I

slots, and if Ik.m denotes the number of slots from a multiplicity k collision to the first

successful transmission, given k packets with counter values 1 and m packets with ".

counter values 2, then,

P(lkm = 0) =0 ; V k,m

U '
. , , , .,..,. ..j , ,. , -I
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i=0
s=2

m 2l- (X-- P (li.mi = s-2), s2
i_=O

Pk , hr
k>1P(lkIm1s) k r

-I ; jPJ 2 (lPk)P(ikm-i -1)
i_=O

0,otherwise

(1.14)

S~tl

Upper and lower bounds on the expected values in (1.10) and (I. 11) are found via the

methodology in [61; thus, further details are omitted here. Those bounds are functions of

the parameters p and q, used in the sequence {Pk )kl of capture probabilities.

b0

0
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Appendix H

Analysis of Algorithm for Simple Ternary Feedback

For the computation of the expected values W, Z, and H, in (4.7), we need the

following quantities:

nu: The number of packet arrivals in an examined interval of length u, that are

successfully transmitted during the collision resolution process.

zu: The sum of delays of the nu packets, after the beginning of the CRI.

Zk. k2: Given ki, i=1,2, packets with counter values equal to i, i=1,2, the expected .

sum of the delays of those that are successfully transmitted by the

algorithm.

Tu, d: The sum of delays of the nu packets, before the beginning of the CRI,

given that the lag at the beginning of the CRI equals d.

lu: The number of slots needed to resolve an examined interval whose length

is u.

hd: The number of slots needed to return to lag equal to one when starting

from a collision resolution instant with lag d.

Wd: The cumulative delay experienced by all the packets that were 1
successfully transmitted during the hd slots.

ad: The number of packets that are successfully transmitted within the interval

that corresponds to hd.

NT
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P(I I u): Given that the examined interval has length u, the probability that the

corresponding collision resolution interval has length 1.

Hd = E(hd}

Wd = E[wd} (II.1)

Ad = Ef{Od} )}

We note that H = H1, W = W 1, and Z = A1 . Also, for Poisson traffic with intensity

X, and for L(m) and N(m) as in Section 4.2, we have (for Pk = pqk-):

Eu}=eXu ()Uk %u qX ~ -uIqk(rr
E {lu)=e (Xuk L) - N L(m ) + + e- u - (H.3),

k! k! Uq

E kzu} = e u e u- ( )
k!u Z -'U(u [k-N U =Xu- e-'(u N~n) (11.3)

_Xu (XLu)k
E~z)= e k! k,O (14

k=O k!

In addition,

2-'uE~nu} ; l<f<dA

E['1u,d) =' (11.5) '.'."--.

d -*'

The following recursions are induced by the algorithm:

1 ;if ld = 1
1d<A ;hd" Id + h, " if ld>l (11.6)

d>A hd = 1A + hd- A + 1,

=Pdd + Zd ; if Id I

l_<d<A;Wd = 'd.d +Zd +W1, ;ifld > 1 (11.7) -

d > A ; Wd = TA~d + ZA + Wd-A+/6

*m
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rnd •if ld I
1< d A" Otd = Lnd + ald if Id >1 (11.8)

d > A; ad = nA + 0cdA+la

kl1; Zk,. k2 = k1 X~ ) 1+ +1 + (m+) k2- N, + Zk2,0-

k,S-Pk k, + k2-Nt~. +2-  1-Pk E__ i Zi., _2- (1.9)r~ I~ri1 - I i = M

Z0 ,k k-N m) + Zk0  (11.10)

The above recursions yield the following infinite dimensionality linear systems:

E{/d} + H, P(l Id) • l<d.<A

1=2 %111H d- =00(I .1

E{lA} + Hda+l P(IIA) ;d>A
i=1

E(Wd,d+Zd} + WP(lid); 1<d<A
1=2

Wd = 00 (11.12)
=IE(ITAd +ZA) + WdA+/ P(IIA) ; d>A

/1=1

E nd} +I A, P(IId) ; l<_d<A
1=2

Ad= 0* (I1.13)

E{ nA + Ad-A+ P(/IA) ; d>A

Let (k,n) denote the state where k packets have counter value equal to 1 and n

packets have counter value equal to 2. Let 1f ) denote the number of slots needed by the

algorithm to go from state (k,n) to state (0,0), given that the algorithm utilizes the integer 0

m in Steps 3.a and 3.b of its operation. Then, the following recursions are induced,

.0
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4
where PO means probability.

-0l~=) 0 0; Vk,n ,P(l~m9=1) =1 (11.14)

ns-m+2
n !l;PMn= n( (11.15)

2 --Pn) P (l(T~is-2); s>m+2

k>- P ; s-M+1

n{ n 2k(1~k k] =s];srr (11.16)

In addition, given Poisson traffic intensity X, we have:

P(lu)= e" -(Xu ' = (11.17)
k=-O k!

Bounds

Let us define the sets (Bn}l 1 , (An, O:5j-n), 1 , {Cn}~ nd n -<jn)~,a

follows:

B, (1+P1 Y4'[3+(2m-1)Pl] (11.18)

Bn [l (l-Pl)I'1+mPn+2 (-fl[+X~ j n !2

AV) (1+P,)f 1 (l-Pl)

n~~A~[ ~) (11.19)N

AO) [1-2-(-Pa)]- 2-n1-Pa) n- n AOJ) ,1 j!n-1,n2
1=J
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A ) A[ 2n(l-p,)]_; P , n>l

C 1 A 0 , C 2 .A (+P 2)_
1 2P2 [2-Xm)] (11.20)

CnA [_2 pn[nX(m)] + 2n( -Pn) E C n3
f n ~ i=2 l

D p) A (i+pi)-, (1_Pl)

(o) A [1-2_,(1-P.)]_' 2_n(l-p) 1+ D n_2 (11.21)

0) [1-2n(1-Pn)]- 2-n(1-Pn) n=  D O) , l jn-1 , n2
i=j•

D(n) A [ _-n(lP)-Pn,

[1-2 (1-Pn)]fPn 1~~1

It can be found by induction, that there exist natural numbers no and ko, such that:

b, + a, n < Bn < bu + a, n

Vn>no  (11.22)

c < AO) < cO) , 05j:_n

d, < Cn < du

V n > ko (11.23)

It is also found then, that: ",

Lm n A(') • ')

and thus,

Lm= [I-A 0)]-' [BI + A 1)1

(11.24)
@

p N•
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[1-Af°)] - ' Bk + A Yk) + £ A9 Li=l i'.oj "

N(,T) = C, + Z ' N Vf-,.0
i_- nf~
i=O

and thus,

Ntm= 0 , d = (Pl+P 2)- ' P2 (1+P 1 )[2-Xm)]

(11.25)

Nfm9 = [1-D°)1-f1  Ck + D) N , k_>3

From (11.21) in conjunction with (11.23), and from (11.26) in conjunction with

(1.24), we conclude that no and ko can be found, such that there exist constants

Au, A,, Bu, BI, Cu, CI, Du,D1, Fu, F, which satisfy the inequalities:

Ct + BI k + A, k2 < Ld < Au k2 + Bu k + Cu ;Vk>no (11.27)

F, + D, k < N~nd < Du k + Fu ; Vk>ko (11.28)

and the bounds in (11.27) and (1.28) are tight. We used those bounds to bound the

quantiLs in (11.2) and (1.3).

Let us define,

n-i
En A [l_2_n(lPn)]_ l Pn[X(m)(l+m/2)_m/2 + 2_n(I_pn)n E  n_>l (11.29)

---- i=0 -

A Pn [1-2-n(l-pn)]- (11.30In nI (1.01L~-2-n (l-Pn)]-' 2-n(1-nnx[) FI) ;0< jn-1 l.3)!

i=j- '

A- 
- -
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{[1IZ.11(1-2-nf 2(-PI) 0 ~
n-iO rn - (11.3 1)

n i I , ;p 0!j:n-1l
L1 )

Then, from (11.9), (11.29), (11.30), and (11. 31), we find:

Znk-n = En , kLo + ,G [k-Nkjio] (11.32)
i_-o J-I

0Also, from (11.29) - (11.31), and by induction, we find that there exist constants

f1, ell fu eu, gl, g, hl, and hu, and some no, such that:

f, +el n:5En:5fu +e,, n ; V n no

glj5FO) gu ;05j:5n, V n~tno (11.33)

hl1 5GO) hu0:5j:5n, V n 2no

Substituting the bounds in (1.33), in expression (11.32), we find:

f + (g, +hl) k +elk 2 <- ;k 5f g u uk2Vk->no (11.34)

We used the bounds in (11.34) to compute bounds on the expected value in (11.4).

I..

%S
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